3.3.17 \(\int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [217]

3.3.17.1 Optimal result
3.3.17.2 Mathematica [C] (warning: unable to verify)
3.3.17.3 Rubi [A] (verified)
3.3.17.4 Maple [A] (verified)
3.3.17.5 Fricas [A] (verification not implemented)
3.3.17.6 Sympy [F(-1)]
3.3.17.7 Maxima [B] (verification not implemented)
3.3.17.8 Giac [F(-1)]
3.3.17.9 Mupad [F(-1)]

3.3.17.1 Optimal result

Integrand size = 25, antiderivative size = 118 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
2*a^(5/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+14/3*a^3*sin 
(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/3*a^2*sin(d*x+c)*(a+a* 
cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)
 
3.3.17.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 8.94 (sec) , antiderivative size = 356, normalized size of antiderivative = 3.02 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {(a (1+\cos (c+d x)))^{5/2} \csc ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (256 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},2,\frac {7}{2};1,\frac {9}{2};2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )+512 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {7}{2},\frac {9}{2},2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (2-3 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+\sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\frac {21 \sqrt {2} \arcsin \left (\sqrt {2} \sqrt {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \left (15-10 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+3 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )}{\sqrt {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}-14 \sqrt {1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )} \left (45+30 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-31 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+12 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )}{672 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(5/2),x]
 
output
((a*(1 + Cos[c + d*x]))^(5/2)*Csc[c/2 + (d*x)/2]^3*Sec[c/2 + (d*x)/2]^5*(2 
56*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{3/2, 2, 7/2}, {1, 9/2}, 2*Sin[c/2 
 + (d*x)/2]^2]*Sin[c/2 + (d*x)/2]^6 + 512*Hypergeometric2F1[3/2, 7/2, 9/2, 
 2*Sin[c/2 + (d*x)/2]^2]*Sin[c/2 + (d*x)/2]^6*(2 - 3*Sin[c/2 + (d*x)/2]^2 
+ Sin[c/2 + (d*x)/2]^4) + (21*Sqrt[2]*ArcSin[Sqrt[2]*Sqrt[Sin[c/2 + (d*x)/ 
2]^2]]*(15 - 10*Sin[c/2 + (d*x)/2]^2 + 3*Sin[c/2 + (d*x)/2]^4))/Sqrt[Sin[c 
/2 + (d*x)/2]^2] - 14*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]*(45 + 30*Sin[c/2 + 
(d*x)/2]^2 - 31*Sin[c/2 + (d*x)/2]^4 + 12*Sin[c/2 + (d*x)/2]^6)))/(672*d)
 
3.3.17.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3241, 27, 3042, 3459, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2}{3} a \int -\frac {\sqrt {\cos (c+d x) a+a} (3 \cos (c+d x) a+7 a)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} a \int \frac {\sqrt {\cos (c+d x) a+a} (3 \cos (c+d x) a+7 a)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 \sin \left (c+d x+\frac {\pi }{2}\right ) a+7 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{3} a \left (3 a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} a \left (3 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {1}{3} a \left (\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {6 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} a \left (\frac {6 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

input
Int[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(5/2),x]
 
output
(2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ( 
a*((6*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + 
 (14*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])))/3
 

3.3.17.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.3.17.4 Maple [A] (verified)

Time = 5.56 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.44

method result size
default \(\frac {2 \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+8 \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(170\)

input
int((a+cos(d*x+c)*a)^(5/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/d*(3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arctan(tan(d*x+c)* 
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+3*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)) 
)^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+8*cos(d*x+c)* 
sin(d*x+c)+sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^ 
(3/2)*a^2
 
3.3.17.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.11 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, {\left (a^{2} \cos \left (d x + c\right )^{3} + a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")
 
output
2/3*((8*a^2*cos(d*x + c) + a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c) 
)*sin(d*x + c) - 3*(a^2*cos(d*x + c)^3 + a^2*cos(d*x + c)^2)*sqrt(a)*arcta 
n(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d* 
cos(d*x + c)^3 + d*cos(d*x + c)^2)
 
3.3.17.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)/cos(d*x+c)**(5/2),x)
 
output
Timed out
 
3.3.17.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1395 vs. \(2 (100) = 200\).

Time = 0.48 (sec) , antiderivative size = 1395, normalized size of antiderivative = 11.82 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")
 
output
1/6*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) 
*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 
 2*c) - 3*a^2*sin(2*d*x + 2*c) - 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3 
*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt( 
a) + 3*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x 
 + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c)))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*...
 
3.3.17.8 Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.3.17.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

input
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(5/2),x)
 
output
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(5/2), x)